PHYSICAL REVIEW E, VOLUME 65, 016208
Detecting determinism in high-dimensional chaotic systems
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A method based upon the statistical evaluation of the differentiability of the measure along the trajectory is
used to identify determinism in high-dimensional systems. The results show that the method is suitable for
discriminating stochastic from deterministic systems even if the dimension of the latter is as high as 13. The
method is shown to succeed in identifying determinism in electroencephalogram signals simulated by means of
a high-dimensional system.
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[. INTRODUCTION one. In this sense, it's not always obvious how to measure
the weight of one part with respect to the other. However, it
Although numerous methods have been developed in reseems very natural to classify parely stochasti@ system
cent years addressed to detect determinism in time seriégat has no residunontrivia) dynamics if its stochastic
[1-5], most of them give wrong or ambiguous results whenPa't iS switched off. For example, this is the case of EG.
applied to high-dimensional systentwe refer to systems and (7) that will be discussed later on. More generally, we

with atiractor’s dimension greater than, say, fivdowever speak of determinism whenever the dynamics has a relevant
9 » Say, ' _ nonstochastic backbone, being conscious that we can decide

high-dimensional systems are ubiquitous in nature, as, 0 s is really non-negligible only when we adopt a suitable

example, in the case of spatially extended systems. Therefofggicator. In this paper we make use of the statistical differ-

it remains the task to develop a robust method capable Qfntiapility of the measure as introduced in Refé1,17.

detecting deterministic behavior in systems with many activerhere it is argued that this quantity is sensible to the amount

degrees of freedorf6]. of dynamical noise intrinsic to the system. Here we explore
We hereby claim that, contrary to some widely acceptedhe two opposite sides of the scenario depicted above, show-

premises in the chaos community—9], it is possible to ing that it sharply discriminates purely stochastic systems

discriminate determinism from stochasticity in systems withfrom deterministic dynamics, even when the latter takes

a high correlatiorior informatior) dimension. Our method is place on rather high-dimensional attractors.

based upon a fundamental property of deterministic systems,

namely, the differentiability of the measure along the trajec- Il. METHODS

tory. Our numerical implementation of this property is robust

enough to uncover this topological property in short data ) ) . L .
sets. To illustrate the point, let's consider a dissipative dynami-

As a very first step, we should clarify what we mean bycal system described biy-first-order differential equations

determinism. Attaching to definitions, saying that a time seX=F(x). The corresponding floi' maps a “typical” initial

ries stems from a deterministic system only if it can be pro-conditionxg into x(t)=f'(xo) at timet. Once transients are

duced by a discrete- or continuous-time dynamics withoufVer, the motion settles over the attractdr Defined over

any stochastic source, would isolate a very small class ofhis set is the natural measure, which, from an operational

phenomena. In fact, even artificial time series from nonstoPoint of view, can be considered as the limiting distribution

chastic dynamical systems are typically affected by numeriof almost all starting initial conditions, that is,

cal noise, which at best can be considered to be in its zero 1t

I|m|t. Unfortunately,.numencal errors tend_ to be magnified w(B.(X)= "m_f 15 (F(yo))dr, 1)

with the reconstruction process and can mimic the effect of a towldJo °F

stochastic feedback. It is pertinent to note that Cascdagll. . ) .

[10] have shown that univariate time series derived fromfor almost ally, in the basin of attraction. In Eq1) B.(x)

sufficiently high-dimensional systems cannot in practice bdndicates the hypersphere of radiugentered ak and 1

regarded as noise-free. the associated characteristic function. In principle, with infi-
On the other hand, the importance of detecting a possiblaitely many data points and arbitrarily fine sampling, one

deterministic dynamics is not merely academic and it is ofterwould consider the limit — 0. In practice a suitable density

motivated by the intention of controlling the nonstochasticestimator is needed. Here we adopt a fixed-volume Epanech-

part of the system under investigation. Thus, operationallynikov kernel[11,12], with a compact suppoi, and a given

we prefer to imagine an underlying dynamics composed of dinite radiusr (see below. As shown previously11,12,

stochastic partthat is, dynamical noigeand a nonstochastic smoothness of this measure along the trajectory is a good

A. Tracking the measure along the trajectory
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candidate to quantify determinism. Numerically, the differ- 1 M
entiability of the measure along the trajectory was evaluated Oco(e)=— E Oco(e,j) (2
by means of the topological statistics developed by Pecora Mp =1

et al.[13]. Actually we look at the continuity of the logarith-

mic derivative of the measursee[12]). and

We want to emphasize that in looking at this property of P
the measure we avoid one of the most common problems Oco(e,j)=1— P L ©)
found in this kind of algorithms, namely, the lack of an ac- max

ceptable scdalinr? regior;'. In faﬁt’ this.i.s the nr:ain %rOblen\Nherepj is the probability that all of the points in th&set,
encountered when dealing with quantities such as the maxly.,, \hq 5 given poink; , of the reconstructed trajectory, fall

mal Lyapunov exponents and/or Kolmogorov entrd@, i, the ¢ set around.d In u(x;)]/dt. The likelihood that this

particularly in the case of hlgh—d!mensmnal sygte(see will happen must be relative to the most likely event under
Ref. [6]).. Especially troublgsome is .the calculayon qf the,[he null hypothesisP,., (see Refs[13] and [16]). When
information ©,) or_correlano_n 02) _dlm_ensmns, in which co(€,j)~1 we can confidently reject the null hypothesis,
the search for a reliable scaling region is the source of mOSg)nd assume that there exists a continuous function. As in the
of the misuse of th? algorlthm. Contrarily, our algorithm work of Pecoreaet al. [13] the e scale is relative to the stan-
needs a realible estimation of the natural measure on th

attractor not in a range of scales but at a fixed one. There i(gard deviation of the density time series, and thes,

a lower value of resolution given by the minimum averageE [0.1]. Plots Qf@CO(e) Versuse can b_e used to_quantn‘y the_
interpoint distance, which can be estimatect gg~N-2P2 degree of sta_tlstlcz_il continuity of a given fu_nctlon. The typi-
and an upper Iimit’ given by the attractor exidéwhich wé cal outcome is a sigmoidal curve whoseIW|dth anq slope are
always normalize to the unit hypersqugfad]. Below the affepted by the level and the type of_n0|se contayne_d in the
lower limit there would be statistical fluctuati.ons due to thes-er-les[ll’lz’lq' In ordgr to characterize the continuity sta-

X . : . - tistics by means of a single parameter we can also calculate,
lack of neighboring points, while close to the upper limit we

must confront edge effecf44,15. The latter are particularly 1
important for high embedding dimensions because, as the Hzf O co(€)de. 4)
dimension increases, more points stay near the attractor 0

boundary. These bounds are by no means exact, for instan(ﬁg]e limiting values ofg, namely, 0 and 1, correspond to a

the expression for the lower limit was derived by alssumingstron ly discontinuous and a fully continuous function, re-
the data points to be uniformly distributed over the attractor, gly y ’

which is not always true even in cases as simple as nonIineglpeCt'Vely' Hereafter we shall refer @as CS(continuity

oscillators. In practice one should look in each particularStat'St'C$'

case for the most appropriate scale to fix. As far as the sys-

tems discussed here are concerned, we have found that set- . RESULTS
ting r at 10% of the attractors’ linear extent is a good choice. A. Generalized Mackey-Glass system
B. Statistical tests of continuity In order to investigate how our algorithm works on high-

dimensional systems, we use a generalization of the Mackey-

A naive test to quantify noise in signals is to check hOWGIass(MG) equation[17], a delayed feedback system,
smooth they are. As long as more noise contaminates the

signal, more discontinuous it becomes. This is the case, for _ ax(t— 7o)

example, of additive noise, e.g., noise added to the signal X() = ———— v,

[6,16]. However, this is by no means a general rule. For 1+x7(t— 7o)

instance, dynamical noise, that is, noise added in the equa- )

tion of motion, is not expected to affect the smoothness of y(t)=—w?x(t)— py(t), 5)

the signal. We overcome this drawback by using the distri-

bution of points on the trajectorfpr the natural measuras Wherea=3, p=1.5, =1, and7,=10. As it is stated in

a way to evaluate the degree of noise in the systege Ref. [17] the Kaplan-Yorke dimension of this system is
[12]). In order to test the mathematical properties of the meab gy~ 13.5, which, according to the Kaplan-Yorke conjec-
sure, that is, continuity, differentiability, inverse differentia- ture,Dyy=D4, for a typical attractor. We have made a stan-
bility, and injectivity, we borrow the statistical approach de-dard reconstruction analysis over time series of up to 16 384
veloped by Pecoraet al. [13]. Basically, the method is data points. Although the optimal time delayshould be
intended to evaluate, in terms of probability or confidencegiven by the first minimum of the mutual information, 210 in
levels, whether two data sets are related by a mapping havirgampling units, we have used a somewhat smaller value,
the continuity property. A functionf is said to be continuous typically 120. Using larger delays in high embedding dimen-
at a pointx, if Ye>0,36>0 such thaf|x—xo||<d=|f(x)  sions would reduce drastically the number of reconstructed
—f(xo)||<e. The results are tested against the null hypoth{oints. The choice of this value, however, is supported by the
esis, specifically, the case in which no functional relationfact that in high dimensions, the optimal seems to be
between points along the trajectory and the measure existsmaller than that given by the mutual information criterion
Thus, as done ifl3], we calculate [18], at least in the case of chaotic continuous-time systems,
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FIG. 1. Log-log plot of the correlation integral, with embedding ~ FIG. 2. Continuity statistic(CS) for the system(5) (filled
dimensions in the range 1040, for theoordinate of systertb).  circles, averaged over six different time series of 16384 data
16 384 data points has been used. Upper lines show the derivatiysints each. Error barstandard deviationare also shown. Thg
of the correlation integral for embedding dimensions of 20, 22, 24coordinate has been used. The empty symbols correspond to their

28, 30, 32, 34, and 36. Horizontal dashed line shows the actuakspective surrogates.
information dimension of the system. B. Simple stochastic systems

as our case. Surrogate time ser[d®,2( with the same As already remarked above, the results just discussed
number of points have also been generated, using the rotrave to be contrasted with those obtained for stochastic sys-
tines in theTISEAN [21] package(“endtoend” and “surro-  tems. Here we show results for two time series derived from

gates’). o _alinear(6) and a nonlinea7) stochastic processes, namely,
We have also calculated the correlation integral of this
system. As it is well known, this is the most basic procedure X= 6x(t)+ 5(t), (6)

to discriminate between deterministic and stochastic behav-

ior. The numerical results for the correlation integral and its .

derivative (that gives the correlation dimensioare shown y=(a=0.9B-y(t)+v28y(t) n(t), (7)

in Fig. 1. The results show that, for this high-dimensional

system, no region with constant slope is found. This clearlywhere z(t) is a Gaussian noise with standard deviation 0.1,

illustrates the well known difficulties inherent to the estima-o=g=1, and §=—0.9. Both processes are examples of

tion of the correlation dimension in high-dimensional sys-purely stochastic systems, as no dynamics is left in the noise-

tems. free limit, exhibit (1f*) power law spectra, a finite correla-
In Fig. 2 we report the values of the continuity statistic tjion dimension &2), and a converging Kolmogorov entropy

(C9 for the generalized MG syste(reconstruction from the  [22]. Note that this is a typical case in which the correlation

y-time serieswhen the embedding dimension is varied in thedimension fails in identifying stochasticity.

range 2—30. In order to increase the robustness of the results, aAttractor reconstruction was carried out on time series

we have averaged the CS for six different time series. Theyith up to 8192 data points and a time delay of 166me-

high values corresponding to the original series, togethefhat less than the first minimum of the mutual information

with the lower values of their surrogates, indicate that outhat in this case lies approximately at 138s it is clearly

method is able to identify determinism in a high-dimensionalseen in Fig. 3, there is no difference between the CS for the

system. We also note that whereas the CS for the originadrginal time series and its surrogate, both showing very low

series remains almost constant for embedding dimensiongjues that indicate a low differentiabilita signature of
larger than the correlation dimension, that for the surrogatgtochasticity as discussed [ih2]).

series decreases steadily. Finally, it is here pertinent to ob-
serve that the results of R¢fl2] are referred to the standard
MG equation[see Eq.(Al) in the Appendi¥, whose corre-
lation dimension is estimated around sey&h while here A paradigmatic example of high-dimensional systems is
we have chosen the generalizatid just to check that the found in physiology, namely, electroencephalogrégtG)
methodology works with a more severe test. However, designals. These are in fact the result of a sum over a large
spite the smaller correlation dimension, in Fig. §b2] the  number of neuronal potentials. There are many studies that
CS for the standard MG system is lower than the CS for theelaim deterministic behavior in EEG dynamics, most of them
generalized version reported here. In the Appendix we disbased on the calculation of the correlation dimension. How-
cuss the solution to this apparent paradox, through a digregver, recent analyses have pointed out many technical prob-
sion on the role of the sampling time on the observed leveléems related to those studiésee[9] and references thergin

of CS. that throw serious doubts on the above conclusion. We have

C. Model of electroencephalogram signals
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04 ' ' ' X11= X0+ @11, (12b
a)

0o L ] X12= @+ X1(X10~ 1), (129
where @=0.15 andu =10 (Rossler attractor This intricate
system has a correlation dimension around nine and has

0.0 ’ ’ ' failed to pass the method originally proposed by Salvino and

0 04 1 Cawley[4].
We have integrated the whole system [&] using a
fourth-order Runge-Kutta algorithm with a fixed step of

027 0.001. The main two coordinateg; and x,, behave in a
markedly different way. Coordinate, shows a rather stan-

0.0 - ‘ - dard behavior with the first zero of the autocorrelation func-

0 5 10 15 tion lying at =27 (in units of sampling timg Instead, the

Embedding Dimension X;-time series exhibits a power spectrum that seems to be of
the 12 type and a first zero of the autocorrelation that
strongly depends on the series lendth We found 1.3
ences are not visible as the points almost coincight different X 10" for N: 10° and 9.9<10" for N=10° (both in units of
realizations of 8192 each have been uggd.ldem as(a) but for a Iarger time ;tep, namely 0.01, that was used to analyze
Eq. (7). Ionger_ time series These r_esults may reveal a nonstationary
behavior ofx,. In fact this coordinate shows a sawtooth

applied our method to the analysis of a EEG-like sigiga! shape with a very long wavelength and, as a consequence, it

generated by the following set of nonlinear coupled equamay appear to increase linearly over rather long _time i_nter—
tions vals. As the analysis dB] was done on the&; coordinate it

may actually be the reason why those authors failed in de-
X=Xy, (89)  tecting determinism in this system. Note that the lack of
stationarity(a property related to ergodicityould imply the
. Xg—25 failure of our method. A proper estimation of thieecon-
Xg=—3 Sinw4t + 3X7SiNw,t 4 X11SiN w3t — 3| Xg| X2 structed measure, requires that space averages correspond to
time averages, which in fact would be impossible if the time
—XgXy, (8p)  series is not stationary. This is the reason why we cannot
estimate confidently the measure along the trajectory using

with w;=30, w,=65, andw;=380; X, in the above system. However, &= X, this allow us a
] better estimate from the, coordinate(since upon differen-
X3=0(X4—X3), (9a  tiating [1] the sawtooth shape of thg-time series coordi-
nate results in very small offsets
X4= — XgXg+X3—Xg, (9b) Figure 4 shows the CS for both tlxg—.time ;eries and its'
surrogate. We have averaged over eight differents realiza-
tions and their corresponding surrogates. The results corre-
spond to time series having 4096 data points and a time
whereo=10, r = 28, andb=8/3 (Lorenz system delay of 27(in this case .th.e first zero of the autpcorrelayon
function and the first minimum of the mutual information
almost coincidg The difference between the CS for the
(109 - . . . .
original series and that for its surrogate is noticeable, even on
) such short time series. This, along with the high value of CS
X7=—kx,— x>+ B cost (10b) - - : -
7 77 X ' obtained for the original serigd 2], reveals an essentially
deterministic origin of the simulated EEG signal.

FIG. 3. CS for random signal$a) Solid circles correspond to
Eq. (6) and empty circles are the corresponding surrogéatifer-

X5=XgX4— bXs, (90)

X6:X7,

wherek=0.1 andB=12 (Ueda equations

Xg=Xg, :
8= Xg (119 IV. DISCUSSION

The examples discussed in the preceding section indicate
that the analysis of the CS with respect to the embedding
dimension reveals useful information in order to discriminate
stochasticity from determinism. Despite the high dimension-
where §=0.15, F=0.15, andw=0.8 (two-well potential ality of the deterministic systems we notice that the distinc-

. 1
Xg= = OXg+ 5 Xg(1- x3) + f coswt, (11b)

Duffing-Holmes attractor tion is feasible almost from the start, that is, from dimensions
_ lower than the attractor dimension. This is an interesting
X10= — (X117 X12), (128  (though somehow “fortunate’outcome since, for such low
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1.0 . - lated to continuity, both are very different properties of the
signal. A strict application of the surrogate methodology in
our case would require one to generate surrogates time series
with the same continuity characteristics of the original sig-
nal. Moreover, and going back to the issue of the absolute
value of the CS, we should keep in mind that the statistics of
Pecora, Carroll, and HeadyL3] are in turn a measure of a
certain null hypothesis. Strictly speaking we are dealing with
the superposition of two null hypotheses and this drawback
doesn't allow a clear interpretation of the CS values coming
from surrogate data. It is likely that a different surrogation
method is required for a safe application of our method to the
analysis of surrogate series derived from nonlinear systems.
We are actually investigating this issue in the light of con-

0 10 20 30 strained randomizatiof23].
Embedding Dimension

08

06 |

CS

04 |

02

0.0

FIG. 4. CS for the EEG-like signal. The results correspond to V. CONCLUDING REMARKS

thex; coordinate of the system. 4096 data points were used in each  Symmarizing, we have shown numerically that it is pos-
of the eight time series averaged. The standard devidggoror  gjple to discriminate determinism from stochasticity in high-
barg is also shown. Empty symbols correspond to their respectiveyimensional systems. A local property of the system, as the
surrogates. differentiablity of the measure along the trajectory, prevents
. . . . . us from regarding as “random” those systems that actually
embedding dimensions, transverse self-intersections of th e deterministi¢a task in which other methods have failed
orbit m'ust occur(or equivalently the eX|ste_nce O.f falsg N€Ar The fact that for sufficiently fine sampling and large embed-
est neighbors HOW?VE‘“ as the embeddlng_ dlmgnsmn_ In'd'ng dimensions the parameter CS for deterministic systems
creases, and especially beyond the correlation dimension always above 0.9, opens the possibility of applying our

the sydstem, thte Ct:S ?f thg Or;g'n.?l ?Lgnglss]?erzlhs to Stab'"tz ethods to the analysis of more complicated series such as
around a constant value. L.ontrarily, the or the surrogatef, experimental ones without resorting to comparison with

series steadily dgcregses for embeddinlg dimensions Iargﬁ{e CS for surrogate series. A lot of work still remains to
tha|1|n t[‘r? cgrsreflatlfhn dlmer|1$|dt|aotr1np?_re Figs. 2 "?mdé‘”:'t' establish the method as a truly practical tool. For instance, its
nally, the or the purely stochastic moces@_ﬂg' ) " Jimits of applicability have to be identified, particularly re-
tains rather low values and is monotonically decreasing. garding the relation between the minimum number of data

. _The small error bars in the CS, both in F_|gs. 2 anq_4, oints in the series and the actual dimension of the system.
indicate that the smoothness of the measure in determinist

- . o , _"i\ately, as the results here discussed seem to indicate, this
points, sampling rate, and ball size in the measure estimatiof,o" ot necessarily require large embedding dimensions
process, etc. But, for most deterministic time series belong- '
ing to different trajectories, the computed CS seems to be a
robust measure of the property we want to identify. On the ACKNOWLEDGMENTS

other hand, the CS calculated for the reconstructed measure We aknowledge the freely available packaggean that

in the case of the surrogate time series shows a large vafjye have used. This work was supported by grants of the
ability. In noting this we are not only referring to the large Spanish CICYT (Grant No. PB96-0085 the European
error bars of Figs. 2 and 4 characteristic of most noisy magTMR Network-Fractals c.n. FMRXCT980183, the Univer-

nitudes, but rather to the largely different CS found for thesjdad Nacional de Quilme#rgenting, and the Universidad
systems of those two figures. In particular we note thatde Alicante(Spain.

while the CS for the original series are similar and higher

.than 0.9, those for the surrqgated series are, _higher than 0.6 A\ppENDIX: HOW RESULTS DEPEND ON SAMPLING

in the case of the generalized Mackey-Glébgy. 2) and

smaller than 0.2 for the EEG signdfig. 4). Surrogate time One of the very preliminary steps in time series analysis is
series generated by the IAAFT meth@@D], as those used to ensure that one is dealing with a good sampling time. The
here, are in fact, realizations of@aussian linear stochastic precise meaning of this statement depends somehow on the
process(possibly passed through a nonlinear invertible measpecific problem at hand. Nonetheless, what is normally
surement function By definition, they share the same corre- done is to check that the sampling time is much smaller than
lation structure of the original time series and the same probthe smallest time scald,,,, present in the system. This
ability density functionhistogran. In passing, notice thatin could be aquas) period, an autocorrelation time, an inverse
Refs. [11,12 the results correspond to the simpler AAFT of the maximum Lyapunov exponent, and so on. However,
method. Although correlation structure is in some way re-there are practical limitations to this rule. Experimentally, the
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resolution time is not always freely adjustable. Numerically, o
one should cope with the limited performances of the ma- 08F— o = = —q
chine. In both cases, one has to consider also the problem of }f\k\&’:¢ *
storing large amount of data. This is fundamental when one —8.it=0.001, n<1 = =

B—8dt=0.005, n=1

realizes that the system possesses intrinsic long time scales, %4 [ gao00s noe
which have to be covered in order to analytationarytime 0o | & 2dt=0005n=3
series. The compromise between series length and stationar-

ity is often achieved by making a resampling of the series .’—,___;.,/—/é s T

*

itself. However, this decimation procedure is not always in- 0.8 . .

nocuous. This appendix is devoted to study how our basic 0.6 IW
index, the CS, is affected when one takes different sampling *—€t=001,n=10
time. We take the following three examples. First, time series 04T oo ]
built from thex coordinate of the Lorenz syste®; in Egs. 02t &—Ad=0.01, n=40

(9)]. Second, the Mackey-Glass delayed differential equation

CS

ax(t ) 0.8 | &—e dit=0.01, n=1
) 5—adt=0.01, n=2
—bx(t), (A1) 06 | 6—o dt=0.01, n=3

X:—
1+Xlo(t_7'0)

0.4 J
choosinga=0.2, b=0.1, and ro=100. Third, the purely 0.2’-%%
(nonlineay stochastic system of E@7). In Fig. 5 we report . . .

the corresponding CS’s versus the embedding dimension, for 2 4 6 .8 10
various values of the decimation time. The resulting series Embedding Dimension

lengths are 10000 for_the Lorenz and MG systems and FIG. 5. Dependence of the CS on the sampling time for different
20000 for the stochastic process. In every case, the delgyntinyous-time systems. Upper panel: Lorenz system: central
time of the reconstruction was chosen as the minimum of th(?anel: standard Mackey-Glass equatidy. (A1)]; lower panel:
Corresponding mutual information. As far as the Lorenz an andom system of EC(?) The Symbo]dt indicates the time step
MG systems are concerned, one sees what is somehow exsed in the numerical integration scheffmurth-order Runge-Kutta
pected for a discretized continuous function, that is, théor the first two and Euler’s for the random systenvhile n corre-
coarser the sampling the lower the continuity level. Hencesponds to the resampling step.

when applying this kind of method, one should keep in mind

that to some extent the CS may be lowered due to a not-s@&ponding to the stochastic system that in turn appear to be
good sampling. In particular, from Figs. 2 and 5 one sees thagssentially independent of the sampling time. It is interesting
it is in fact the origin of the discrepancy, anticipated in Sec.to speculate to what extent this last property can be exploited
[l A, between the MG data shown here and those of Refto buildup a technique based on resampling, where the sto-
[12]. Nevertheless, an important feature must be pointed outhastic signals are identified just as those that are “squeezed
namely, that this “runoff” is not arbitrary. The CS for the down” to rather low values of CS, independently of their
deterministic systems does not fall down to the values correresolution.
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