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Detecting determinism in high-dimensional chaotic systems
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A method based upon the statistical evaluation of the differentiability of the measure along the trajectory is
used to identify determinism in high-dimensional systems. The results show that the method is suitable for
discriminating stochastic from deterministic systems even if the dimension of the latter is as high as 13. The
method is shown to succeed in identifying determinism in electroencephalogram signals simulated by means of
a high-dimensional system.
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I. INTRODUCTION

Although numerous methods have been developed in
cent years addressed to detect determinism in time se
@1–5#, most of them give wrong or ambiguous results wh
applied to high-dimensional systems~we refer to systems
with attractor’s dimension greater than, say, five!. However,
high-dimensional systems are ubiquitous in nature, as,
example, in the case of spatially extended systems. There
it remains the task to develop a robust method capable
detecting deterministic behavior in systems with many ac
degrees of freedom@6#.

We hereby claim that, contrary to some widely accep
premises in the chaos community@7–9#, it is possible to
discriminate determinism from stochasticity in systems w
a high correlation~or information! dimension. Our method is
based upon a fundamental property of deterministic syste
namely, the differentiability of the measure along the traj
tory. Our numerical implementation of this property is robu
enough to uncover this topological property in short d
sets.

As a very first step, we should clarify what we mean
determinism. Attaching to definitions, saying that a time
ries stems from a deterministic system only if it can be p
duced by a discrete- or continuous-time dynamics with
any stochastic source, would isolate a very small class
phenomena. In fact, even artificial time series from nons
chastic dynamical systems are typically affected by num
cal noise, which at best can be considered to be in its z
limit. Unfortunately, numerical errors tend to be magnifi
with the reconstruction process and can mimic the effect
stochastic feedback. It is pertinent to note that Casdagliet al.
@10# have shown that univariate time series derived fr
sufficiently high-dimensional systems cannot in practice
regarded as noise-free.

On the other hand, the importance of detecting a poss
deterministic dynamics is not merely academic and it is of
motivated by the intention of controlling the nonstochas
part of the system under investigation. Thus, operationa
we prefer to imagine an underlying dynamics composed
stochastic part~that is, dynamical noise! and a nonstochasti
1063-651X/2001/65~1!/016208~6!/$20.00 65 0162
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one. In this sense, it’s not always obvious how to meas
the weight of one part with respect to the other. However
seems very natural to classify aspurely stochastica system
that has no residual~nontrivial! dynamics if its stochastic
part is switched off. For example, this is the case of Eqs.~6!
and ~7! that will be discussed later on. More generally, w
speak of determinism whenever the dynamics has a rele
nonstochastic backbone, being conscious that we can de
if this is really non-negligible only when we adopt a suitab
indicator. In this paper we make use of the statistical diff
entiability of the measure as introduced in Refs.@11,12#.
There it is argued that this quantity is sensible to the amo
of dynamical noise intrinsic to the system. Here we explo
the two opposite sides of the scenario depicted above, sh
ing that it sharply discriminates purely stochastic syste
from deterministic dynamics, even when the latter tak
place on rather high-dimensional attractors.

II. METHODS

A. Tracking the measure along the trajectory

To illustrate the point, let’s consider a dissipative dynam
cal system described byn-first-order differential equations
ẋ5F(x). The corresponding flowf t maps a ‘‘typical’’ initial
conditionx0 into x(t)5 f t(x0) at time t. Once transients are
over, the motion settles over the attractorA. Defined over
this set is the natural measure, which, from an operatio
point of view, can be considered as the limiting distributi
of almost all starting initial conditions, that is,

m„Br~x!…5 lim
t→`

1

t E0

t

1Br
„f t~y0!…dt, ~1!

for almost ally0 in the basin of attraction. In Eq.~1! Br(x)
indicates the hypersphere of radiusr centered atx and 1Br

the associated characteristic function. In principle, with in
nitely many data points and arbitrarily fine sampling, o
would consider the limitr→0. In practice a suitable densit
estimator is needed. Here we adopt a fixed-volume Epan
nikov kernel@11,12#, with a compact supportBr and a given
finite radius r ~see below!. As shown previously@11,12#,
smoothness of this measure along the trajectory is a g
©2001 The American Physical Society08-1
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candidate to quantify determinism. Numerically, the diffe
entiability of the measure along the trajectory was evalua
by means of the topological statistics developed by Pec
et al. @13#. Actually we look at the continuity of the logarith
mic derivative of the measure~see@12#!.

We want to emphasize that in looking at this property
the measure we avoid one of the most common proble
found in this kind of algorithms, namely, the lack of an a
ceptable scaling region. In fact, this is the main probl
encountered when dealing with quantities such as the m
mal Lyapunov exponents and/or Kolmogorov entropy@8#,
particularly in the case of high-dimensional systems~see
Ref. @6#!. Especially troublesome is the calculation of t
information (D1) or correlation (D2) dimensions, in which
the search for a reliable scaling region is the source of m
of the misuse of the algorithm. Contrarily, our algorith
needs a realible estimation of the natural measure on
attractor not in a range of scales but at a fixed one. Ther
a lower value of resolution given by the minimum avera
interpoint distance, which can be estimated asr min;N22/D2,
and an upper limit given by the attractor extent~which we
always normalize to the unit hypersquare! @14#. Below the
lower limit there would be statistical fluctuations due to t
lack of neighboring points, while close to the upper limit w
must confront edge effects@14,15#. The latter are particularly
important for high embedding dimensions because, as
dimension increases, more points stay near the attra
boundary. These bounds are by no means exact, for inst
the expression for the lower limit was derived by assum
the data points to be uniformly distributed over the attrac
which is not always true even in cases as simple as nonli
oscillators. In practice one should look in each particu
case for the most appropriate scale to fix. As far as the
tems discussed here are concerned, we have found tha
ting r at 10% of the attractors’ linear extent is a good choi

B. Statistical tests of continuity

A naive test to quantify noise in signals is to check ho
smooth they are. As long as more noise contaminates
signal, more discontinuous it becomes. This is the case
example, of additive noise, e.g., noise added to the sig
@6,16#. However, this is by no means a general rule. F
instance, dynamical noise, that is, noise added in the e
tion of motion, is not expected to affect the smoothness
the signal. We overcome this drawback by using the dis
bution of points on the trajectory~or the natural measure! as
a way to evaluate the degree of noise in the system~see
@12#!. In order to test the mathematical properties of the m
sure, that is, continuity, differentiability, inverse differenti
bility, and injectivity, we borrow the statistical approach d
veloped by Pecoraet al. @13#. Basically, the method is
intended to evaluate, in terms of probability or confiden
levels, whether two data sets are related by a mapping ha
the continuityproperty. A functionf is said to be continuous
at a pointx0 if ;e.0,'d.0 such thatix2x0i,d⇒i f (x)
2 f (x0)i,e. The results are tested against the null hypo
esis, specifically, the case in which no functional relat
between points along the trajectory and the measure ex
Thus, as done in@13#, we calculate
01620
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QC0~e!5
1

np
(
j 51

np

QC0~e, j ! ~2!

and

QC0~e, j !512
pj

Pmax
, ~3!

wherepj is the probability that all of the points in thed set,
around a given pointxj , of the reconstructed trajectory, fa
in the e set around@d ln m(xj )#/dt. The likelihood that this
will happen must be relative to the most likely event und
the null hypothesis,Pmax ~see Refs.@13# and @16#!. When
QC0(e, j )'1 we can confidently reject the null hypothes
and assume that there exists a continuous function. As in
work of Pecoraet al. @13# the e scale is relative to the stan
dard deviation of the density time series, and thus,e
P@0,1#. Plots ofQC0(e) versuse can be used to quantify th
degree of statistical continuity of a given function. The typ
cal outcome is a sigmoidal curve whose width and slope
affected by the level and the type of noise contained in
series@11,12,16#. In order to characterize the continuity st
tistics by means of a single parameter we can also calcu

u5E
0

1

QC0~e!de. ~4!

The limiting values ofu, namely, 0 and 1, correspond to
strongly discontinuous and a fully continuous function, r
spectively. Hereafter we shall refer tou as CS~continuity
statistics!.

III. RESULTS

A. Generalized Mackey-Glass system

In order to investigate how our algorithm works on hig
dimensional systems, we use a generalization of the Mack
Glass~MG! equation@17#, a delayed feedback system,

ẋ~ t !5
ax~ t2t0!

11x10~ t2t0!
2y~ t !,

ẏ~ t !52v2x~ t !2ry~ t !, ~5!

where a53, r51.5, v51, andt0510. As it is stated in
Ref. @17# the Kaplan-Yorke dimension of this system
DKY;13.5, which, according to the Kaplan-Yorke conje
ture,DKY5D1, for a typical attractor. We have made a sta
dard reconstruction analysis over time series of up to 16
data points. Although the optimal time delayt should be
given by the first minimum of the mutual information, 210
sampling units, we have used a somewhat smaller va
typically 120. Using larger delays in high embedding dime
sions would reduce drastically the number of reconstruc
points. The choice of this value, however, is supported by
fact that in high dimensions, the optimalt seems to be
smaller than that given by the mutual information criteri
@18#, at least in the case of chaotic continuous-time syste
8-2
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DETECTING DETERMINISM IN HIGH-DIMENSIONAL . . . PHYSICAL REVIEW E 65 016208
as our case. Surrogate time series@19,20# with the same
number of points have also been generated, using the
tines in theTISEAN @21# package~‘‘endtoend’’ and ‘‘surro-
gates’’!.

We have also calculated the correlation integral of t
system. As it is well known, this is the most basic proced
to discriminate between deterministic and stochastic beh
ior. The numerical results for the correlation integral and
derivative ~that gives the correlation dimension! are shown
in Fig. 1. The results show that, for this high-dimension
system, no region with constant slope is found. This clea
illustrates the well known difficulties inherent to the estim
tion of the correlation dimension in high-dimensional sy
tems.

In Fig. 2 we report the values of the continuity statis
~CS! for the generalized MG system~reconstruction from the
y-time series! when the embedding dimension is varied in t
range 2–30. In order to increase the robustness of the res
we have averaged the CS for six different time series. T
high values corresponding to the original series, toget
with the lower values of their surrogates, indicate that o
method is able to identify determinism in a high-dimensio
system. We also note that whereas the CS for the orig
series remains almost constant for embedding dimens
larger than the correlation dimension, that for the surrog
series decreases steadily. Finally, it is here pertinent to
serve that the results of Ref.@12# are referred to the standar
MG equation@see Eq.~A1! in the Appendix#, whose corre-
lation dimension is estimated around seven@2#, while here
we have chosen the generalization~5! just to check that the
methodology works with a more severe test. However,
spite the smaller correlation dimension, in Fig. 8 of@12# the
CS for the standard MG system is lower than the CS for
generalized version reported here. In the Appendix we
cuss the solution to this apparent paradox, through a dig
sion on the role of the sampling time on the observed lev
of CS.

FIG. 1. Log-log plot of the correlation integral, with embeddin
dimensions in the range 10–40, for they coordinate of system~5!.
16 384 data points has been used. Upper lines show the deriv
of the correlation integral for embedding dimensions of 20, 22,
28, 30, 32, 34, and 36. Horizontal dashed line shows the ac
information dimension of the system.
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B. Simple stochastic systems

As already remarked above, the results just discus
have to be contrasted with those obtained for stochastic
tems. Here we show results for two time series derived fr
a linear~6! and a nonlinear~7! stochastic processes, name

ẋ5ux~ t !1h~ t !, ~6!

ẏ5~a20.5!b2y~ t !1A2by~ t !h~ t !, ~7!

whereh(t) is a Gaussian noise with standard deviation 0
a5b51, and u520.9. Both processes are examples
purely stochastic systems, as no dynamics is left in the no
free limit, exhibit (1/f a) power law spectra, a finite correla
tion dimension ('2), and a converging Kolmogorov entrop
@22#. Note that this is a typical case in which the correlati
dimension fails in identifying stochasticity.

Attractor reconstruction was carried out on time ser
with up to 8192 data points and a time delay of 100~some-
what less than the first minimum of the mutual informati
that in this case lies approximately at 130!. As it is clearly
seen in Fig. 3, there is no difference between the CS for
orginal time series and its surrogate, both showing very l
values that indicate a low differentiability~a signature of
stochasticity as discussed in@12#!.

C. Model of electroencephalogram signals

A paradigmatic example of high-dimensional systems
found in physiology, namely, electroencephalogram~EEG!
signals. These are in fact the result of a sum over a la
number of neuronal potentials. There are many studies
claim deterministic behavior in EEG dynamics, most of the
based on the calculation of the correlation dimension. Ho
ever, recent analyses have pointed out many technical p
lems related to those studies~see@9# and references therein!
that throw serious doubts on the above conclusion. We h

ive
,
al

FIG. 2. Continuity statistic~CS! for the system~5! ~filled
circles!, averaged over six different time series of 16 384 d
points each. Error bars~standard deviation! are also shown. They
coordinate has been used. The empty symbols correspond to
respective surrogates.
8-3
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G. J. ORTEGA, C. DEGLI ESPOSTI BOSCHI, AND E. LOUIS PHYSICAL REVIEW E65 016208
applied our method to the analysis of a EEG-like signal@9#
generated by the following set of nonlinear coupled eq
tions,

ẋ15x2 , ~8a!

ẋ25
x5225

3
sinv1t13x7sinv2t1x11sinv3t23ux6ux2

2x9x1 , ~8b!

with v1530, v2565, andv3580;

ẋ35s~x42x3!, ~9a!

ẋ452x3x51rx32x4 , ~9b!

ẋ55x3x42bx5 , ~9c!

wheres510, r 528, andb58/3 ~Lorenz system!:

ẋ65x7 , ~10a!

ẋ752kx72x6
31B cost, ~10b!

wherek50.1 andB512 ~Ueda equations!:

ẋ85x9 , ~11a!

ẋ952dx91
1

2
x8~12x8

2!1 f cosvt, ~11b!

where d50.15, F50.15, andv50.8 ~two-well potential
Duffing-Holmes attractor!:

ẋ1052~x111x12!, ~12a!

FIG. 3. CS for random signals.~a! Solid circles correspond to
Eq. ~6! and empty circles are the corresponding surrogates~differ-
ences are not visible as the points almost coincide!. Eight different
realizations of 8192 each have been used.~b! Idem as~a! but for
Eq. ~7!.
01620
-

ẋ115x101a11, ~12b!

ẋ125a1x12~x102m!, ~12c!

wherea50.15 andm510 ~Rössler attractor!. This intricate
system has a correlation dimension around nine and
failed to pass the method originally proposed by Salvino a
Cawley @4#.

We have integrated the whole system of@9# using a
fourth-order Runge-Kutta algorithm with a fixed step
0.001. The main two coordinates,x1 and x2, behave in a
markedly different way. Coordinatex2 shows a rather stan
dard behavior with the first zero of the autocorrelation fun
tion lying at .27 ~in units of sampling time!. Instead, the
x1-time series exhibits a power spectrum that seems to b
the 1/f 2 type and a first zero of the autocorrelation th
strongly depends on the series lengthN. We found 1.3
3104 for N5105 and 9.93104 for N5106 ~both in units of
a larger time step, namely 0.01, that was used to ana
longer time series!. These results may reveal a nonstationa
behavior of x1. In fact this coordinate shows a sawtoo
shape with a very long wavelength and, as a consequenc
may appear to increase linearly over rather long time in
vals. As the analysis of@9# was done on thex1 coordinate it
may actually be the reason why those authors failed in
tecting determinism in this system. Note that the lack
stationarity~a property related to ergodicity! would imply the
failure of our method. A proper estimation of the~recon-
structed! measure, requires that space averages correspo
time averages, which in fact would be impossible if the tim
series is not stationary. This is the reason why we can
estimate confidently the measure along the trajectory us
x1 in the above system. However, asẋ15x2, this allow us a
better estimate from thex2 coordinate~since upon differen-
tiating @1# the sawtooth shape of thex1-time series coordi-
nate results in very small offsets!.

Figure 4 shows the CS for both thex2-time series and its
surrogate. We have averaged over eight differents real
tions and their corresponding surrogates. The results co
spond to time series having 4096 data points and a t
delay of 27~in this case the first zero of the autocorrelati
function and the first minimum of the mutual informatio
almost coincide!. The difference between the CS for th
original series and that for its surrogate is noticeable, even
such short time series. This, along with the high value of
obtained for the original series@12#, reveals an essentially
deterministic origin of the simulated EEG signal.

IV. DISCUSSION

The examples discussed in the preceding section indi
that the analysis of the CS with respect to the embedd
dimension reveals useful information in order to discrimina
stochasticity from determinism. Despite the high dimensio
ality of the deterministic systems we notice that the distin
tion is feasible almost from the start, that is, from dimensio
lower than the attractor dimension. This is an interest
~though somehow ‘‘fortunate’’! outcome since, for such low
8-4
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DETECTING DETERMINISM IN HIGH-DIMENSIONAL . . . PHYSICAL REVIEW E 65 016208
embedding dimensions, transverse self-intersections of
orbit must occur~or equivalently the existence of false nea
est neighbors!. However, as the embedding dimension
creases, and especially beyond the correlation dimensio
the system, the CS of the original signal seems to stab
around a constant value. Contrarily, the CS for the surroga
series steadily decreases for embedding dimensions la
than the correlation dimension~compare Figs. 2 and 4!. Fi-
nally, the CS for the purely stochastic processes~Fig. 3! at-
tains rather low values and is monotonically decreasing.

The small error bars in the CS, both in Figs. 2 and
indicate that the smoothness of the measure in determin
systems shows almost no dependence on initial conditi
The absolute value of the CS for deterministic signals m
slightly depend on several factors, namely, number of d
points, sampling rate, and ball size in the measure estima
process, etc. But, for most deterministic time series belo
ing to different trajectories, the computed CS seems to b
robust measure of the property we want to identify. On
other hand, the CS calculated for the reconstructed mea
in the case of the surrogate time series shows a large
ability. In noting this we are not only referring to the larg
error bars of Figs. 2 and 4 characteristic of most noisy m
nitudes, but rather to the largely different CS found for t
systems of those two figures. In particular we note th
while the CS for the original series are similar and high
than 0.9, those for the surrogated series are, higher than
in the case of the generalized Mackey-Glass~Fig. 2! and
smaller than 0.2 for the EEG signal~Fig. 4!. Surrogate time
series generated by the IAAFT method@20#, as those used
here, are in fact, realizations of aGaussian linear stochastic
process~possibly passed through a nonlinear invertible m
surement function!. By definition, they share the same corr
lation structure of the original time series and the same pr
ability density function~histogram!. In passing, notice that in
Refs. @11,12# the results correspond to the simpler AAF
method. Although correlation structure is in some way

FIG. 4. CS for the EEG-like signal. The results correspond
thex2 coordinate of the system. 4096 data points were used in e
of the eight time series averaged. The standard deviation~error
bars! is also shown. Empty symbols correspond to their respec
surrogates.
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lated to continuity, both are very different properties of t
signal. A strict application of the surrogate methodology
our case would require one to generate surrogates time s
with the same continuity characteristics of the original s
nal. Moreover, and going back to the issue of the abso
value of the CS, we should keep in mind that the statistics
Pecora, Carroll, and Heagy@13# are in turn a measure of
certain null hypothesis. Strictly speaking we are dealing w
the superposition of two null hypotheses and this drawb
doesn’t allow a clear interpretation of the CS values com
from surrogate data. It is likely that a different surrogati
method is required for a safe application of our method to
analysis of surrogate series derived from nonlinear syste
We are actually investigating this issue in the light of co
strained randomization@23#.

V. CONCLUDING REMARKS

Summarizing, we have shown numerically that it is po
sible to discriminate determinism from stochasticity in hig
dimensional systems. A local property of the system, as
differentiablity of the measure along the trajectory, preve
us from regarding as ‘‘random’’ those systems that actua
are deterministic~a task in which other methods have failed!.
The fact that for sufficiently fine sampling and large embe
ding dimensions the parameter CS for deterministic syste
is always above 0.9, opens the possibility of applying o
methods to the analysis of more complicated series suc
the experimental ones without resorting to comparison w
the CS for surrogate series. A lot of work still remains
establish the method as a truly practical tool. For instance
limits of applicability have to be identified, particularly re
garding the relation between the minimum number of d
points in the series and the actual dimension of the syst
Real applications would require one to extract informati
about the existence of many more~hundred, thousand, etc.!
active degrees of freedom of the underlying system. Fo
nately, as the results here discussed seem to indicate,
does not necessarily require large embedding dimension
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APPENDIX: HOW RESULTS DEPEND ON SAMPLING

One of the very preliminary steps in time series analysi
to ensure that one is dealing with a good sampling time. T
precise meaning of this statement depends somehow on
specific problem at hand. Nonetheless, what is norm
done is to check that the sampling time is much smaller t
the smallest time scale,tmin , present in the system. Thi
could be a~quasi! period, an autocorrelation time, an inver
of the maximum Lyapunov exponent, and so on. Howev
there are practical limitations to this rule. Experimentally, t
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resolution time is not always freely adjustable. Numerica
one should cope with the limited performances of the m
chine. In both cases, one has to consider also the proble
storing large amount of data. This is fundamental when
realizes that the system possesses intrinsic long time sc
which have to be covered in order to analyzestationarytime
series. The compromise between series length and statio
ity is often achieved by making a resampling of the ser
itself. However, this decimation procedure is not always
nocuous. This appendix is devoted to study how our ba
index, the CS, is affected when one takes different samp
time. We take the following three examples. First, time ser
built from thex coordinate of the Lorenz system@x3 in Eqs.
~9!#. Second, the Mackey-Glass delayed differential equa

ẋ5
ax~ t2t0!

11x10~ t2t0!
2bx~ t !, ~A1!

choosinga50.2, b50.1, andt05100. Third, the purely
~nonlinear! stochastic system of Eq.~7!. In Fig. 5 we report
the corresponding CS’s versus the embedding dimension
various values of the decimation time. The resulting se
lengths are 10 000 for the Lorenz and MG systems
20 000 for the stochastic process. In every case, the d
time of the reconstruction was chosen as the minimum of
corresponding mutual information. As far as the Lorenz a
MG systems are concerned, one sees what is somehow
pected for a discretized continuous function, that is,
coarser the sampling the lower the continuity level. Hen
when applying this kind of method, one should keep in m
that to some extent the CS may be lowered due to a not
good sampling. In particular, from Figs. 2 and 5 one sees
it is in fact the origin of the discrepancy, anticipated in S
III A, between the MG data shown here and those of R
@12#. Nevertheless, an important feature must be pointed
namely, that this ‘‘runoff’’ is not arbitrary. The CS for th
deterministic systems does not fall down to the values co
y
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sponding to the stochastic system that in turn appear to
essentially independent of the sampling time. It is interest
to speculate to what extent this last property can be explo
to buildup a technique based on resampling, where the
chastic signals are identified just as those that are ‘‘squee
down’’ to rather low values of CS, independently of the
resolution.

FIG. 5. Dependence of the CS on the sampling time for differ
continuous-time systems. Upper panel: Lorenz system; cen
panel: standard Mackey-Glass equation@Eq. ~A1!#; lower panel:
random system of Eq.~7!. The symboldt indicates the time step
used in the numerical integration scheme~fourth-order Runge-Kutta
for the first two and Euler’s for the random system!, while n corre-
sponds to the resampling step.
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